Ovo je pregled DELA TEKSTA rada na
temu "Determinante". Rad ima 13 strana.
Ovde je prikazano oko 500 reči izdvojenih iz rada.
Napomena: Rad koji dobjate na e-mail ne izgleda ovako, ovo je
samo DEO TEKSTA izvučen iz rada, da bi se video stil pisanja.
Radovi koje dobijate na e-mail su uređeni (formatirani) po svim standardima. U
tekstu ispod su namerno izostavljeni pojedini segmenti.
Ako tekst koji se nalazi ispod nije čitljiv (sadrži kukice, znakove pitanja ili
nečitljive karaktere), molimo Vas, prijavite to ovde.
Uputstvo o načinu preuzimanja rada možete pročitati ovde.
VISOKA ŠKOLA ZA POSLOVNU EKONOMIJU I PREDUZETNIŠTVO
BEOGRAD
SEMINARSKI RAD
Predmet: MATEMATIKA ZA EKONOMISTE
DETERMINANTE
Beograd, decembar, 2008.
S A D R Ž A J
Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Pojam determinante . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 4. Determinante drugog reda . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Linearna
nezavisnost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 5. Primer 1 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 6. Determinante trećeg reda . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 7. Pojam minora elemenata
kvadratne matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 7. Pojam kofaktora . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.
Način izračunavanja vrednosti determinante trećeg reda
. . . . . . . . . . . . . . . . . . . . . . . . 10. Primer 2 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 11. Zaključak . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12. Literatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.
U V O D
Cilj ovog rada je da se čitaoci, na što lakši način, uvide značaj i koristi
korišćenja matrične algebre u modelovanju ekonomske stvarnosti. To ćemo
najlakše postići kroz proučavanje:
1) Pojma determinante,
2) Pojma detrminanti drugog i trećeg reda i njihovog korišćenja u ekonomskim
modelima biznisa,
3) Upotrebe determinanti u rešavanju sistema linearnih jednačina pri
modeliranju ekonomskih problema u biznisu.
Pojam determinante
Ako zadatu kvadratnu matricu A = (aij)n,n pomoću određenog pravila izrazimo u
vidu realnog broja, onda takav broj najčešće nazivamo determinantom zadate
kvadratne matrice. Primera radi, ako je zadata kvadratna matrica drugog reda:
EMBED Equation.3 ,
realni broj (skalar) u oznaci
EMBED Equation.3 ,
koji možemo izraziti pomoću određenog pravila u vidu jednog broja, nazivamo
determinantom kvadratne matrice A. Dakle, samo kvadratna matrica može imati
determinantu. Isto kao i kod matrice, determinanta ima glavnu i sporednu
dijagonalu.
Skup elemenata (a11,a22) čini glavnu dijagonalu, dok skup elemenata (a21,a12)
obrazuje sporednu dijagonalu determinante.
Determinante drugog reda
Ako je zadata matrica oblika:
EMBED Equation.3
onda ona ima vrednost determinante, u oznaci ( ima (A(, koja se izračunava tako
što se od proizvoda elemenata glavne dijagonale oduzme proizvod elemenata
sporedne dijagonale determinante:
EMBED Equation.3
Linearna nezavisnost
Ako je vrednost determinante jednaka nuli, to znači da postoji zavisnost između
redova (ili kolona) matrice. Takvu matricu nazivamo singularna matrica.
Ukoliko je vrednost determinante različita od nule, onda postoji nezavisnost
između redova (ili kolona) matrice. Ovakvu matricu zovemo nesingularna
(regularna) matrica.
Primer 1
Zadatak: Nađi determinante:
a) EMBED Equation.3 , b) EMBED Equation.3 , c) EMBED Equation.3 ,
---------- CEO RAD MOŽETE PREUZETI NA SAJTU. ----------
MOŽETE NAS KONTAKTIRATI NA E-MAIL: [email protected]
maturski.org Besplatni seminarski Maturski Diplomski Maturalni SEMINARSKI RAD , seminarski radovi download, seminarski rad besplatno, www.maturski.org, Samo besplatni seminarski radovi, Seminarski rad bez placanja, naknada, sms-a, uslovljavanja.. proverite!